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Acceptor doped perovskites such as strontium cerate form a variety of point defects through reaction with
surrounding gases at high temperature, namely protons by dissolution of water vapour, electron holes by
dissolution of oxygen and electrons by loss of oxygen. The defect equilibria can be described by three equilibrium
constants coupled with electroneutrality and site conservation constraints. This work describes a numerical solution
of these equations for arbitrary oxygen and water vapour partial pressures, without the need to neglect minority
defects. It further examines the charge compensation mechanisms that dominate under the different regimes and
their implications for transport properties.

vapour, with the generation of protons:1 Introduction
H2O+VO··AOO×+2 Hi· (1a)1.1 Background

[Hi·]2=KH PH
2
O [VO··] [OO×]−1 (1b)Doped alkaline earth cerate and zirconate perovskites exhibit

proton conduction at elevated temperatures1–4 due to dissolu- Dissolution of oxygen, with the generation of electron holes:
tion of water vapour and the formation of mobile protons. In 1/2 O2+VO··AOO×+2 hi· (2a)
such systems, an equilibrium arises between four types of point

[hi·]2=Kh PO
2

1/2 [VO··] [OO×]−1 (2b)defects, namely oxide ion vacancies, protons, electrons and
electron holes. The defect equilibria have been described for Loss of oxygen, at low partial pressure, with the generation
both vanishing4,5 and finite6,7 concentrations of free electrons, of electrons:
but these treatments have not taken into account a constraint

OO×AVO··+2 e∞+1/2 O2 (3a)namely, that of conservation of oxygen sites.
The present work describes a numerical solution of the [e∞]2=Ke PO

2

−1/2 [OO×] [ VO··]−1 (3b)
complete set of defect equations, including this constraint. The

The above defect concentrations must satisfy the electro-solutions, presented in the form of two- and three-dimensional
neutrality condition, namely:graphs of defect concentrations versus water vapour and

2 [ VO··]+[Hi·]+[hi·]−[e∞]−[MB∞]=0 (4)oxygen partial pressures, are used to illustrate the dominant
transport properties under various conditions and acceptor and also the anion site conservation condition, which for a
dopant concentrations. In common with earlier work,4–7 this perovskite is as follows:
treatment ignores the Schottky defect equilibrium for which,

[VO··]+[OO×]=3 (5)in any case, the equilibrium constant is not available. The
errors resulting from this omission will be negligible for heavily In the above, PH

2
O and PO

2

are independent variables, [MB∞],doped systems at temperatures low in comparison to their KH, Kh and Ke are system and temperature dependent para-
melting point, namely for typical perovskite proton conductors meters and [VO··], [Hi·], [hi·] and [e∞] are the required solutions.
such as SrCe0.95Yb0.05O2.975 or BaCe0.90Yb0.10O2.95 at The exciton equilibrium equation [e∞][hi·]=Kex is not explicitly
temperatures of 1200 °C or lower. used, but is implicit in the above, since it can be derived by

multiplication of eqn. (2b) and (3b). In another formulation,6
1.2 Definition of defect equilibria where the exciton equilibrium is included, (3b) is omitted. The

above set of defect equations, and indeed more complex defectConsider a system AB1−yMy
O3−y/2±d where A and B are

schemes involving cation vacancies, can be solved using anparent cations of valence 2 and 4 respectively and M is a
alternative, stepwise method proposed recently.9 This uses thetrivalent cation substituting on the B-site. The following point
mathematical device of treating [VO··] as an independentdefects and normal lattice oxygen are defined using the Kröger-
variable and PO

2

as a dependent variable. As a result, however,Vink notation.8
that method cannot provide solutions at predefined values of
oxygen partial pressure, leading to difficulties in theSubstitutional cation: MB∞ presentation of three-dimensional surface plots.

Oxide ion vacancy: VO··
1.3 Solution of the analytical defect equation

Proton (interstitial ): Hi· Combining eqn. (5) with (1), (2) and (3) consecutively and
Electron hole: hi· taking square roots gives:

Electron: e∞ [Hi·]=KH1/2 PH
2
O1/2 x (6)

Normal oxygen OO× [hi·]=Kh1/2 PO
2

1/4 x (7)

[e∞]=Ke1/2 PO
2

−1/4 x−1 (8)We now consider the following three defect reactions with
their associated equilibrium equations. Dissolution of water where xM{[ VO··]/(3−[VO··])}1/2 (9)
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Table 1 Input parameters used for the simulation studyin which case: [VO··]=(3x2)/(x2+1) (10)

inserting eqn. (6)–(8) into the electroneutrality eqn. (4) and Description Symbol Value
rearranging, yields:

Doping level for trivalent ion on B-site [MB∞] 0.10a
b x4+(6−[MB∞]) x3+(b−a) x2−[MB∞] x−a=0 (11) Equilibrium constant for proton formation KH 20 atm−1

Equilibrium constant for hole formation Kh 10−5 atm−1/2in which aMKe1/2PO
2

−1/4 (12)
Equilibrium constant for electron formation Ke 10−17 atm1/2

and bMKH1/2PH
2
O1/2+Kh1/2 PO

2

1/4 (13) aValid for all simulations except those shown in Fig. 3, in which [MB∞]has been varied.After solving eqn. (11), x is inserted into eqn. (6)–(8) and
(10) to give the required defect concentrations. Eqn. (11) is
quartic and, therefore, has an analytic solution, but, in practice Table 2 Experimental equilibrium constant KH for selected perovskite
it was found easier to implement a Newton–Raphson iterative proton conductorsa
solution, see for example ref. 10. If eqn. (11) is written in the

Compound T/°C KH/atm−1 Ref.form f (x)=0, the Newton–Raphson formula (14) gives the
(i+1)th iteration of x in terms of the ith iteration.

BaCe0.95Gd0.05O2.975 600 26 11
x
i+1=x

i
−f (x

i
)/f ∞(x

i
) (14) BaCe0.95Nd0.05O2.975 600 13 12

BaCe0.95Nd0.05O2.975 900 3 12
where f (x)=b x4+(6−[MB∞]) x3+(b−a) x2−[MB∞] x−a (Ba0.98Gd0.02) (Ce0.87Gd0.13)O2.945 800 20b 13

(15)
aThe original literature values were based on models defining
[OO×]∏1. To reconcile these with the present site conservationand f ∞(x)=4b x3+3(6−[MB∞]) x2+2(b−a) x−[MB∞] equation, according to which [OO×]∏3, the quoted literature values(16)
have been multiplied by a factor of 3. bSingle crystal material; value
interpolated from data supplied by authors.The initial guess for x was provided by solving a quadratic

equation (17) obtained under the assumptions [e∞]=0 and
x%1, the latter assumption allowing eqn. (10) to be simplified
to [ VO··]=3x2.

6 x2+b x−[MB∞]=0 (17)

thus x={−b+(b2+24 [MB∞])1/2}/12 (18)

This solution is an excellent approximation for the full quartic
model in the high-PO

2

regime, where the electron concentration
is indeed negligible and the oxygen vacancy concentration
never exceeds [MB∞]/2. By using this initial guess, convergence
was obtained within about ten iterations. To be on the safe
side, fifteen iterations were used and the self-consistency of all
solutions was checked by verifying electroneutrality.

2.3 Choice of simulation inputs

The purpose of this work is to focus on an interesting set of
conditions, i.e. where several defects coexist in non-negligible
concentrations. Therefore, wide ranges of partial pressure were
chosen without concern as to their physical realisability,
namely 10−8–108 atm for PH

2
O and 10−30–1010 atm for PO

2

.
The input parameters for the model are given in Table 1. For
some typical perovskite proton conductors, values of KH are
available from thermogravimetric studies (Table 2), so KH was
assigned a realistic value for a rare earth doped cerate perov-
skite at 600–800 °C. Equilibrium constants Kh and Ke were set

Fig. 1 (a) Brouwer diagram of defect concentrations in a perovskiteto values consistent, within about an order of magnitude, with
proton conductor for the case [MB∞]=0.1 and PH

2
O=10−2 atm.those used by other authors.7 The doping level, [MB∞], was (b) Electroneutrality errors for the calculations.

held constant at 0.10, unless otherwise stated.

0.05, determined by the simplified electroneutrality condition
3 Results and discussion 2[ VO··]#[MB∞]. The latter limit is valid for very low proton

uptake, i.e. very low water partial pressures. For the protonsThe calculated concentrations for the four defects of interest
the plateau occurs at [Hi·]#0.10, corresponding to the con-are shown in Fig. 1(a) as a Brouwer diagram for a fixed
dition [Hi·]#[MB∞]. These regimes are well understood andPH

2
O of 10−2 atm. Over a wide range of PO

2

, the ionic defects
experimentally accessible in real systems. For the holes, a(oxide ion vacancies and protons) have constant concen-
plateau corresponding to [hi·]#[MB∞] was expected at verytrations: [VO··]=0.028; [Hi·]=0.044, corresponding to a water
high PO

2

, but this was not found in the parameter spaceuptake of almost half the saturation value. The electronic
covered. Instead, the hole concentration increased monoton-defects behave as minority carriers. As shown in Fig. 1(b),
ically with increasing PO

2

and decreasing PH
2
O [Fig. 2(c)]. Forthe electroneutrality errors in these calculations are consistently

the acceptor doped system modelled, no intrinsic compensation10−16 or less and are no doubt the result of rounding off
regime is expected for electrons and indeed their concentrationerrors in the calculation of x.
increases monotonically with increasing PH

2
O and decreasingFig. 2 shows the same defect concentrations as three-

PO
2

[Fig. 2(d)]. Outside the extrinsic regimes, more complexdimensional plots calculated for a logarithmically spaced grid
compensation conditions apply. When both PH

2
O and PO

2

areof PO
2

and PH
2
O. In certain partial pressure ranges, the oxide

low, the vacancy concentration rises according to the conditionion vacancy and proton concentrations have plateaus which
2[ VO··]#[MB∞]+[e∞]. Conversely, at low PH

2
O and high PO

2

,may be associated with intrinsic compensation regimes. For
oxide ion vacancies [Fig. 2(a)] the plateau occurs at [VO··]= oxygen is dissolved in the solid and the vacancy concentration
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Fig. 2 Defect concentrations for a logarithmically spaced grid of PO
2

and PH
2
O for the case [MB∞]=0.1. (a) oxide ion vacancies, (b) protons, (c)

holes and (d) electrons. Partial pressures are in atm. The plateaus visible in (a) and (b) correspond to intrinsic charge compensation regimes.

falls, a situation that may be described by the condition PO
2

range, electrons are minority carriers and [e∞] is proportional
to (PO

2

)−0.25 [Fig. 4(a)] and [Hi·] is constant [Fig. 4(b)].2[VO··]+[hi·]#[MB∞].
Fig. 3 shows the four defect concentrations of interest as a However, at PO

2

<10−20 atm, the slope of log([e∞]) versus
log(PO

2

) begins to fall and [Hi·] increases rapidly. Inspectionfunction of dopant concentration for a fixed water vapour
pressure of 10−2 atm. For vacancies and protons [Fig. 3(a)] of the output data files for this regime indicated an effective

electroneutrality condition 2 [VO··]+[Hi·]−[e∞]−[MB∞’]#0. Overand for holes [Fig. 3(b)] the calculations were performed for
PO
2

=1 atm and for electrons [Fig. 3(c)] for PO
2

=10−20 atm. the whole PO
2

range, the data in Fig. 4(b) is described by the
power law [Hi·]=a+b(PO

2

)−0.15. Assuming a constant protonAs shown in Fig. 3(a), the concentrations of the ionic defects
have different curvatures and [ VO··] and [Hi·] cross over at mobility, in these circumstances, the protonic conductivity

would have an oxygen partial pressure dependence that might[MB∞]=0.20, as well as in the trivial case [MB∞]=0. It is
interesting that for the realistic value of KH used, the quantity suggest that it is n-type electronic. This effect, which, to the

authors’ knowledge has not been pointed out before, might[Hi·]−[ VO··] is maximum at [MB∞]=0.075; i.e. at this doping
level protons dominate most strongly over vacancies. This explain some discrepancies in the reported conduction mechan-

isms of proton conducting perovskites, as discussed below.may be linked to the empirical fact that, in this type of
compound, pure protonic conductivity is achieved at doping Acceptor doped SrCeO3 and BaCeO3 have been described

as partial n-type electronic conductors due to an increase inlevels of around 5%.1–4 The concentrations of vacancies and
protons are almost independent of the equilibrium constants conductivity at low partial pressures of oxygen.14–16 On the

other hand, in hydrogen-rich atmospheres, these compoundsKh and Ke, provided these are both much lower than KH, as
is the case in the present simulations. are found to retain high protonic transport numbers, as

demonstrated by their ability to pump hydrogen electrochemi-The electronic defects behave as expected but, in view of the
uncertainty over Kh and Ke, their main use here is for showing cally.15 The above simulations show that, under strongly

reducing conditions, the concentrations of protons and elec-qualitative trends. Thus [hi·] increases with doping level
[Fig. 3(b)] in a manner similar to [Hi·]. As shown in Fig. 3(c), trons can both be significant. Which carrier dominates the

conductivity will depend on the relative magnitude of theircalculated for low oxygen partial pressure conditions, the
electron concentration decreases with acceptor doping. mobilities; obviously, if the electrons had a much lower

mobility, the protons would dominate. Therefore, a reliableFig.4 shows the PO
2

dependence of [e∞] and [Hi·], for the case
[MB∞]=0.1 and PH

2
O=10−2 atm. For most of the simulated identification of the conduction mechanism cannot be made
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the oxygen stoichiometry, 3−[ VO··], and proton concentration.
It can also be used to model the total conductivities, provided
the mobilities of the charge carriers are known. Considering
the iterative nature of the solution, it is difficult to imagine
using the full model to obtain equilibrium constants by fitting
to conductivity data, but approximate solutions, such as the
quadratic one described, can and have been used, see for
example ref. 5.

4 Conclusions
The concentration of ionic and electronic defects in a perovskite
proton conductor was obtained by numerical solution of a
quartic equation involving three equilibrium constants, the
doping level and the partial pressures of water vapour and
oxygen. In certain ranges of partial pressure, the concentrations
of vacancies and protons follow simple electroneutrality con-
ditions such as 2[VO··]#[MB∞] or [hi·]#[MB∞], corresponding to
extrinsic doping regimes. Simulation of the low oxygen partial
pressure regime shows that the protonic concentration varies
with PO

2

, potentially giving rise to confusion with n-type
electronic conductivity. The total electrical conductivity can be
modelled if the charge carrier mobilities are known.

5 Acknowledgements
Yang Du and K.-D. Kreuer are acknowledged for supplying
data on water vapour equilibrium constants, M. Mogensen,
T. Norby and B. C. H. Steele are thanked for useful discussions
and B. Zachau-Christiansen is thanked for a critical reading
of the manuscript. This work was supported by the Materials
Research Department, under the fundamental Defect
Chemistry project and by the New Energy DevelopmentFig. 3 Defect concentrations in a perovskite proton conductor as a
Organisation (NEDO) of Japan under the project Advancedfunction of acceptor dopant concentration calculated for a fixed PH

2
O Ceramics for Protonics, led by Professor H. Iwahara.of 10−2 atm. (a) Oxide ion vacancies and protons for PO

2

=1 atm; (b)
holes for PO

2

=1 atm; (c) electrons for PO
2

=10−20 atm.

References
1 H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State

Ionics, 1981, 3/4, 359.
2 H. Iwahara, Proc. Intl. Conference on advanced materials (ICAM

91), Symposium A2: Solid State Ionics, Strasbourg, 27–31 May
1991, Ed. M. Balkanski, T. Takahashi and H. L. Tuller, Intl.
Union of Materials Research Societies, Amsterdam, 1992, 575.

3 H. Iwahara, Advanced Ceramics for Protonics, in High
Temperature Electrochemistry, Ceramics and Metals, Proc. 17th
Risø Intl. Symposium on Materials Science, ed. F. W. Poulsen,
N. Bonanos, S. Linderoth, M. Mogenson and B. Zachau-
Christiansen, Risø National Laboratory, Roskilde, Denmark,
1996, Sept. 2–6.

4 H. Uchida, H. Yoshikawa and H. Iwahara, Solid State Ionics,
1989, 35, 229.

5 Y. Larring and T. Norby, Solid State Ionics, 1997, 97, 523.
6 T. Schober and H. Wenzl, Ionics, 1995, 81, 111.
7 T. Schober, W. Schilling and H. Wenzl, Solid State Ionics, 1996,

86–88, 653.
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